Amendments in Tender Enquiry No. A3 (51085)2019/PUR

cascade control. High speed computer interface, cascade control. High speed computer interface, using the industry-standard Ethernet. using the industry-standard Ethernet. Transducer signal conditioners for load, stroke Transducer signal conditioners for load, stroke and external strain sensors to provide high and external strain sensors to provide high accuracy, low drift and low noise transducer accuracy, low drift and low noise transducer signal with user selectable standard filters. signal with user selectable standard filters. Digital sensor conditioners providing minimum Digital sensor conditioners providing minimum 16 bit data resolution across the complete span of 16 bit data resolution across the complete span of the sensor. Interlocks and indicators are to be the sensor. Interlocks and indicators are to be provided for transducer excitation failure and provided for transducer excitation failure and conditioner saturation. conditioner saturation. Automatic transducer recognition and Automatic transducer recognition and calibration to be provided. calibration to be provided. The transducer should be provided with The transducer should be provided with traceable calibration from the reputed accredited traceable calibration from the reputed accredited laboratory from the country of All adjustments laboratory from the country of All adjustments on the signal conditioners are to be made by on the signal conditioners are to be made by software. software. Programmable limit/event detection, providing Programmable limit/event detection, providing rapid intelligent actions or test interruptions. rapid intelligent actions or test interruptions. User selectable limit/event detector actions such User selectable limit/event detector actions such as hydraulic off, indicate, hold, change mode and as hydraulic off, indicate, hold, change mode and hold, reset, unload, no action. Programmable hold, reset, unload, no action. Programmable error detection, providing rapid intelligent error detection, providing rapid intelligent actions or test interruptions. User selectable actions or test interruptions. User selectable error detector actions such as hydraulic off, error detector actions such as hydraulic off, indicate, hold, change mode and hold, reset, indicate, hold, change mode and hold, reset, unload, no action. Programmable display meters, unload, no action. Programmable display meters, providing the user the flexibility of programming providing the user the flexibility of programming the parameters to be displayed on the meters. the parameters to be displayed on the meters. All test templates that support testing against All test templates that support testing against standards can be modified by the user using the standards can be modified by the user using the graphic interface (no requirement to change graphic interface (no requirement to change source code). All variable definitions and source code). All variable definitions and calculations as well as the test flow/sequence and calculations as well as the test flow/sequence and logic are visible and can be changed by the user. logic are visible and can be changed by the user. The user should be able to select any of the The user should be able to select any of the following parameters for display cyclic/ramp following parameters for display cyclic/ramp signal track, mean, amplitude, min., max., peak, signal track, mean, amplitude, min., max., peak, valley, current cycle count, total cycle count, valley, current cycle count, total cycle count, segments etc. The user should be able to segments etc. The user should be able to generate as many number of display meters as generate as many number of display meters as required to display the above parameters based required to display the above parameters based on the requirement. Programmable display on the requirement. Programmable display scopes, providing the user the flexibility of scopes, providing the user the flexibility of programming the parameter to be displayed on X programming the parameter to be displayed on X and Y axis. User should be able to adjust the and Y axis. User should be able to adjust the scaling and trace time based on the requirement. scaling and trace time based on the requirement.

The scope should have user selectable and auto	The scope should have user selectable and auto
scaling features. The scope should be able to plot	scaling features. The scope should be able to plot
one channel versus another channel.	one channel versus another channel.
Programmable automatic mode changing to any	Programmable automatic mode changing to any
transducer connected to the machine which has	transducer connected to the machine which has
been selected for control including load limited	been selected for control including load limited
displacement during specimen loading.	displacement during specimen loading.
Waveform command generation with 32-bit	Waveform command generation with 32-bit
resolution up to 500 Hz for each sensor, with,	resolution up to 500 Hz for each sensor, with,
sine, triangle, square, haversine, havertriangle,	sine, triangle, square, haversine, havertriangle,
haversquare, ramp, dual ramp, trapezoid in	haversquare, ramp, dual ramp, trapezoid in
relative and absolute modes and support for	relative and absolute modes and support for
digital drive data or an analogue input of ± 10 V.	digital drive data or an analogue input of ± 10 V.
High precision digital signal conditioner and	High precision digital signal conditioner and
valve drivers should be provided for the control	valve drivers should be provided for the control
signals.	signals.
The controller with necessary software should be	The controller with necessary software should be
able to run static tests and data acquisition should	able to run static tests and data acquisition should
have the following features:	have the following features:
Selection of wave form type, timed sample, peak	Selection of wave form type, timed sample, peak
/ valley, max / min, level-crossing, cyclic /	/ valley, max / min, level-crossing, cyclic /
logarithmic and mean/amplitude with ability to	logarithmic and mean/amplitude with ability to
tie data channels to a master signal. Starting	tie data channels to a master signal. Starting
quadrant, and number of cycles to stop, action to	quadrant, and number of cycles to stop, action to
be taken at the end of the defined test.	be taken at the end of the defined test.
Run, hold, continue, and stop buttons for	Run, hold, continue, and stop buttons for
controlling the test.	controlling the test.
On line instantaneous adjustment of frequency,	On line instantaneous adjustment of frequency,
amplitude and mean of the cyclic waveform	amplitude and mean of the cyclic waveform
tests.	tests.
Online visual indication of limit settings and	Online visual indication of limit settings and
status.	status.
Data acquisition and storage of external and	Data acquisition and storage of external and
internal signals with user adjustable sampling	internal signals with user adjustable sampling
rate. The data acquisition mode in the form of	rate. The data acquisition mode in the form of
maximum and minimum, level crossing, peak	maximum and minimum, level crossing, peak
valley, continuous and high speed.	valley, continuous and high speed.
Remote handset to be provided for the proposed	Remote handset to be provided for the proposed
test system to enable setting up of specimens in	test system to enable setting up of specimens in
manual mode. The user should be able to switch	manual mode. The user should be able to switch
on / off hydraulics from the controller. The user	on / off hydraulics from the controller. The user
should start, pause and stop the test program.	should start, pause and stop the test program.
Emergency switch off button should be provided	Emergency switch off button should be provided
in the load frame, hydraulic power pack and near	in the load frame, hydraulic power pack and near
the controller	the controller
The proposed controller should be able to	The proposed controller should be able to
connect two actuators independently in the	connect two actuators independently in the
same controller chassis. The proposed Controller	same controller chassis. The proposed Controller

must be expandable to at least four independent	must be expandable to at least four independent
test stations (provision for future expansion)	test stations (provision for future expansion)
Controller should comply with UL / CSA / CE	Controller should comply with UL / CSA / CE
compliance.	compliance.
The Manufacturer/ supplier should quotefor the actuator, load cell, displacementtransducer and digital controller all the fourfrom the same manufactureri.e., A manufacturer/ supplier attempting toquote for equipment for which they are notthe OEM will be summarily rejected	The Manufacturer/ supplier should quote for the actuator and digital controller from the same manufacturer/ supplier. i.e., A manufacturer/ supplier who does not comply with the above condition will be summarily rejected
Annexure II Clause 14	Annexure II Clause 14
Digital electronic controller	Digital electronic controller
Digital electronic controller should have	Digital electronic controller should have
following advanced control features. Adaptive	following advanced control features. Adaptive
Control System, allowing continuous update of	Control System, allowing continuous update of
PID terms for specimen stiffness and	PID terms for specimen stiffness and
automatically compensating at minimum 1 kHz,	automatically compensating at minimum 1 kHz,
Auto and manual tuning facility. The controller	Auto and manual tuning facility. The controller
should adapt for peak/valley control,	should adapt for peak/valley control,
amplitude/mean control, amplitude and phase	amplitude/mean control, amplitude and phase
control. Control loop update should be minimum	control. Control loop update should be minimum
5 kHz. Multi term control, including PID, lag,	5 kHz. Multi term control, including PID, lag,
feed forward and compensation, with serial,	feed forward and compensation, with serial,
parallel and cascade control. High speed	parallel and cascade control. High speed
computer interface, using the industry-standard	computer interface, using the industry-standard
IEEE-488.2 or USB. Transducer signal	IEEE-488.2 or USB. Transducer signal
conditioner to provide high accuracy, low drift	conditioner to provide high accuracy, low drift
and low noise transducer signal with variable	and low noise transducer signal with variable
filters in the range 100 Hz to 1 kHz in increments	filters in the range 100 Hz to 1 kHz in increments
of 1 Hz. Digital sensor conditioners providing	of 1 Hz. Digital sensor conditioners providing
minimum 19 bit data resolution across the	minimum 19 bit data resolution across the
complete span of the sensor. Interlocks and	complete span of the sensor. Interlocks and
indicators are to be provided for transducer	indicators are to be provided for transducer
excitation failure and conditioner saturation.	excitation failure and conditioner saturation.
Automatic transducer recognition and	Automatic transducer recognition and
calibration preventing a transducer overload.	calibration preventing a transducer overload.
The transducer should be provided with	The transducer should be provided with
traceable calibration. All adjustments on the	traceable calibration. All adjustments on the
signal conditioners are to be made by software.	signal conditioners are to be made by software.
Programmable limit/event detection, providing	Programmable limit/event detection, providing
rapid intelligent actions or test interruptions.	rapid intelligent actions or test interruptions.
User selectable limit/event detector actions such	User selectable limit/event detector actions such

as hydraulic off, indicate, hold, change mode and hold, reset, unload, no action etc. Programmable error detection, providing rapid intelligent actions or test interruptions. User selectable error detector actions such as hydraulic off, indicate, hold, change mode and hold, reset, unload, no action etc. Programmable display meters, providing the user the flexibility of programming the parameter to be displayed on the meters. The user should be able to select any of the following parameters for display: cyclic/ramp signal track, mean, amplitude, min, max, peak, valley, current cycle count, total cycle count, segments etc. The user should be able to generate as many no of display meters as required to display the above parameters based on the requirement. Programmable display scopes, providing the user the flexibility of programming the parameter to be displayed on X and Y axis. The user should be able to select any of the following parameters for the Y axis: load, stroke, command, servo drive, error etc. The user should be able to select any of the following parameters for the X axis: time, load, stroke. User should be able to adjust the scaling and trace time based on the requirement. The scope should have user selectable auto scaling feature. The scope should be able to plot one channel versus another channel. Pre-programmable automatic mode changing to any transducer connected to the machine which has been selected for control. Waveform command generation with 32 bit resolution at up to 1 kHz for each sensor, with, sine, triangle, square, haversine, havertriangle, haversquare, ramp, dual ramp, trapezoid in relative and absolute modes and support for digital drive data downloaded locally from a PC or via an analogue input of ± 10 V. Service data playback of digital files via computer interface at up to 5,000 samples per second on all channels. Specimen protect facility to ensure load on specimen is kept within selectable limits during specimen loading. Minimum 4 digital I/O and 2 analogue outputs of ± 10 V per channel of controller. The user should be able to configure any of the following parameters for analogue outputs: load, stroke, command, servo drive, ground. Minimum one analogue inputs of ± 10 V

as hydraulic off, indicate, hold, change mode and hold, reset, unload, no action etc. Programmable error detection, providing rapid intelligent actions or test interruptions. User selectable error detector actions such as hydraulic off, indicate, hold, change mode and hold, reset, unload, no action etc. Programmable display meters, providing the user the flexibility of programming the parameter to be displayed on the meters. The user should be able to select any of the following parameters for display: cyclic/ramp signal track, mean, amplitude, min, max, peak, valley, current cycle count, total cycle count, segments etc. The user should be able to generate as many no of display meters as required to display the above parameters based on the requirement. Programmable display scopes, providing the user the flexibility of programming the parameter to be displayed on X and Y axis. The user should be able to select any of the following parameters for the Y axis: load, stroke, command, servo drive, error etc. The user should be able to select any of the following parameters for the X axis: time, load, stroke. User should be able to adjust the scaling and trace time based on the requirement. The scope should have user selectable auto scaling feature. The scope should be able to plot one channel versus another channel. Pre-programmable automatic mode changing to any transducer connected to the machine which has been selected for control. Waveform command generation with 32 bit resolution at up to 1 kHz for each sensor, with, sine, triangle, square, haversine, havertriangle, haversquare, ramp, dual ramp, trapezoid in relative and absolute modes and support for digital drive data downloaded locally from a PC or via an analogue input of ± 10 V. Service data playback of digital files via computer interface at up to 5,000 samples per second on all channels. Specimen protect facility to ensure load on specimen is kept within selectable limits during specimen loading. Minimum 4 digital I/O and 2 analogue outputs of ± 10 V per channel of controller. The user should be able to configure any of the following parameters for analogue outputs: load, stroke, command, servo drive, ground. Minimum one analogue inputs of ± 10 V

per channel controller for data acquisition of external analog signals. Continuous synchronous data acquisition at user selectable sampling rate with maximum 5 kHz on all internal and external channels. The application software for running static, fatigue, dynamic tests and data acquisition should have the following features: selection of wave form type, frequency, mean/amplitude, peak/valley, starting quadrant, no of cycles to stop, action to be taken at the end of the defined test. Block loading capability: to drive actuator synchronously from single demand drive file or multiple demand drive files in sequence. It should be possible to define multiple number of segments in each demand drive file. It should be possible to define the number of cycles, set point, amplitude and wave shape in each segment. Run, hold, continue, and stop buttons for controlling the test. On line instantaneous adjustment of frequency, amplitude and mean of the cyclic waveform tests. Online visual indication of limit settings and status. Data acquisition and storage of external and internal signals with adjustable sampling rate. The digital controller and associated hardware should be compatible for installing demand drive file generation software which will be used to model the test rig and test structure to simulate product service conditions in a controlled laboratory environment using field measurements, including load, strain, displacement, velocity and acceleration. The software should be capable of running multi channel/multi axis testing up to four actuators by adding required additional controller boards. The controller should have provision for adding additional two controller boards (total of four channels) for multi axis testing requirements. Controller must be expandable to at least two independent test stations with common hydraulic power pack/ HSM

<u>The Manufacturer/ supplier should quote</u> for the actuator, load cell, displacement transducer and digital controller all the four from the same manufacturer

i.e., A manufacturer/ supplier attempting to guote for equipment for which they are not

per channel controller for data acquisition of external analog signals. Continuous synchronous data acquisition at user selectable sampling rate with maximum 5 kHz on all internal and external channels. The application software for running static, fatigue, dynamic tests and data acquisition should have the following features: selection of wave form type, frequency, mean/amplitude, peak/valley, starting quadrant, no of cycles to stop, action to be taken at the end of the defined test. Block loading capability: to drive actuator synchronously from single demand drive file or multiple demand drive files in sequence. It should be possible to define multiple number of segments in each demand drive file. It should be possible to define the number of cycles, set point, amplitude and wave shape in each segment. Run, hold, continue, and stop buttons for controlling the test. On line instantaneous adjustment of frequency, amplitude and mean of the cyclic waveform tests. Online visual indication of limit settings and status. Data acquisition and storage of external and internal signals with adjustable sampling rate. The digital controller and associated hardware should be compatible for installing demand drive file generation software which will be used to model the test rig and test structure to simulate product service conditions in a controlled laboratory environment using field measurements, including load, strain, displacement, velocity and acceleration. The software should be capable of running multi channel/multi axis testing up to four actuators by adding required additional controller boards. The controller should have provision for adding additional two controller boards (total of four channels) for multi axis testing requirements.

Controller must be expandable to at least two independent test stations with common hydraulic power pack/ HSM

The Manufacturer/ supplier should quote for the actuator and digital controller from the same manufacturer/ supplier.

i.e., A manufacturer/ supplier who does not comply with the above condition will be summarily rejected

the OEM will be summarily rejected	